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A trajectory-preprocessing algorithm has been devised which matches antenna
angular position, velocity, and acceleration to those of a target. This eliminates
vibrations of the antenna structure caused by discontinuities in velocity and ac-
celeration commands, and improves antenna-pointing performance by constraining
antenna motion to a linear regime. The algorithm permits faster acquisition times
and preserves antenna-tracking capability in situations where there would otherwise
be an unacceptably sudden change in antenna velocity or acceleration. A simulation
of DSS 13 shows that this preprocessor would reduce servo error to 1 mdeg during
acquisition of a low-Earth-orbiting satellite.

I. Introduction

When a large antenna is moved in a sudden or jerky manner, the ensuing vibration of the structure
can adversely affect pointing accuracy. A fast-moving antenna which stops in a precipitous manner upon
acquiring a target may vibrate enough to lose lock. Even in situations for which the vibration amplitude
does not immediately produce an unacceptable pointing error, the servo control may enter a nonlinear,
and possibly unstable, region. This problem can arise when the servo controller attempts to apply an
excessive velocity or acceleration in an attempt to track a sudden command change [1].

In the past, Deep Space Network pointing requirements have been for slow antenna motion. While
DSN antennas are required to track at up to 0.4 deg per sec, they are not required to meet pointing
requirements for other than sidereal targets.1 The prospect of very accurate acquisition of low-Earth-
orbiting satellites (with angular velocities in excess of even 0.4 deg per sec) is a relatively new idea. The
anticipation of such requirements has led to the present work.

Trajectory preprocessing is one method used to preserve antenna-pointing integrity. The principal idea
is to make antenna motion smoother during target acquisition, although the algorithm can be applied
to all antenna motion commands. The present antenna control system is nonlinear. Its behavior is
governed by the nonlinearity (acceleration and velocity limits), its inputs, the initial conditions, and
the linear subsystem frequency response (the controller bandwidth). This has resulted in a system with
complicated switching rules for changing the controller bandwidth as a function of inputs. A change in a
velocity or acceleration limit affects the switching rules. The system can still work poorly for some sets
of inputs, initial conditions, and parameters.

1 W. Scherr, Deep Space Communications Complex Subsystem Functional Requirements, Antenna Mechanical Subsystem
(1991 through 1997), JPL D-1179, Rev. C (internal document), Jet Propulsion Laboratory, Pasadena, California, Septem-
ber 1, 1992.
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Since commands which are in violation of these limits cause the system to behave nonlinearly, a simple
method for allowing the system to operate in a linear regime is to force command angles to conform to
the limits. Trajectory preprocessing performs this task.

Even if an antenna were perfectly rigid and could be moved at will at accelerations of up to 1 deg/sec2,
it could still overshoot a target during a high-speed acquisition. When the difference in speeds between
average acquisition velocity and tracking velocity can easily exceed a deg/sec, some algorithm is needed
to ensure that the acquisition time remains reasonable for a target which may not be visible for more
than a minute or two in the first place. This provides a further motivation for considering trajectory
preprocessing.

The problem to be solved by this preprocessor is to find an optimal, or at least an adequate, path from
an initial antenna position, velocity, and acceleration to some target trajectory. The first idea that was
considered for finding this path was to use the calculus of variations. This idea was abandoned for three
reasons. First, the method is overly complex. Second, the calculation time can be large. The method is
iterative, and the calculation time is indeterminate, making it unsuitable for a real-time system. Finally,
although the calculus of variations can give a least-time solution, it is not easy to include constraints that
will prevent sudden changes in the slopes of the antenna velocity and acceleration profiles.

II. The Three-Region Method

The method described in this article involves three regions of antenna motion and was inspired by the
following scenario. A target is far away and one wishes to move the antenna towards the target trajectory
as quickly as possible. So one begins by accelerating the antenna to its maximum speed; that is region 1.
Then, in region 2 one moves the antenna at maximum speed until one is near the target. Finally, in
region 3, the antenna is decelerated until it matches the apparent target angular position and angular
velocity.

As applied to a low-Earth-orbiting satellite, the initial scenario envisioned the following preprocessor
steps:

(1) Input a set of target positions and velocities (θ and v) for both local azimuth and elevation as
a function of time using known orbital parameters (updated by optical detection).

(2) Choose an intercept (acquisition) θel = θ0el . From this obtain the time interval, T , from the
start of region 1 to the intercept time, as well as θaz and both vaz and vel. Input the initial
antenna pointing (θ0 and v0) and the maximum angular velocity for the antenna (vmax). Input
or calculate maximum angular accelerations for the antenna (amax > 0).

(3) If necessary, try a different maximum acceleration (remaining less than or equal to the specified
limit) or a later acquisition time. Set a flag if acquisition is not possible before θel > θmax.

The same algorithm can be used for reacquisition during tracking (without the flag). One does not
need to start by choosing the acquisition elevation. A total acquisition time can be input instead. This
time can be chosen by noting the distance in position and the change in velocity that must occur. Using
one’s experience from previous acquisitions, it will often be possible to choose an acquisition time within
a second of the minimum. Should one’s choice be too small, the algorithm can be rerun with steadily
increasing total times input. In practice, the maximum acceleration may simply be set to the specified
acceleration limit.

For acquisition, in both azimuth and elevation, it is best to chase the target rather than approach it
head-on; this lessens the required change in velocity. That means that θ0 should be a little less than θ.
Thus, while waiting for the target to appear, the antenna will generally be pointing at a place in the
trajectory close to that anticipated by an optical acquisition aid. The antenna will typically have an
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initial velocity of approximately zero in elevation (or it might badly overshoot the target). When the
target shows up “late,” the Earth’s rotation will cause it to move in azimuth as a function of lateness, so
the antenna may initially be moving slowly in azimuth. The formula for the minimum time to acquire is
then T = vf/A, where A is the average acceleration.

When A = amax, we get the fastest acquisition. An amax in elevation of 0.5 deg/sec gives T = 2vf ,
where v is in deg/sec and T is in sec.

In our acquisition schemes, the average A will often be amax/2 or less, giving a minimum acquisition
time of 4vf sec. When vf is about 0.5 deg/sec, this results in a minimum acquisition time on the order
of 2 sec.

This minimum acquisition time applies only when

∆θel =
v2
f

2A

If, for example, we initially aim at the acquisition point instead of a point v2
f/2A below it, the minimum

time increases from T to T/
√

2− 1.

Figure 1 shows the matching in elevation of antenna pointing with that of a target. Figure 2 shows
the antenna angular velocity for this example. In these figures, the antenna is aimed a little above
the acquisition point. Figure 3 shows how the algorithm matches angular position when the antenna is
initially aimed a little below this point.

The acquisition time will often be determined by the change in vel. The final azimuthal velocity is
usually much smaller, and there may even be an initial azimuthal velocity. However, if the antenna is
simply waiting several degrees from the acquisition, θaz, the azimuthal acquisition time can easily become
the total acquisition time.

III. Acquisition Schemes

Four acquisition schemes are considered in this article:

Scheme 1: Match initial and final angular position and velocities. Use the maximum allowable
acceleration throughout each acceleration region.

Scheme 2: The same as scheme 1, but use a sinusoidal acceleration pattern to avoid large dis-
continuities in acceleration.

Scheme 3: The same as scheme 2, but match the final acceleration as well.

Scheme 4: The same as scheme 2, but match both initial and final accelerations.

Each of these ideas has some merit. The calculations needed to implement the trajectory-preprocessing
algorithm are similar for any of the first three schemes.

A. The First Acquisition Scheme

Scheme 1 has the advantage of speed. By using the maximum acceleration, the target can be reached
more quickly. Even when the increased initial overshoot and ensuing oscillations are taken into account,
the total acquisition time may be minimized in some situations. On the other hand, when the angu-
lar distance to the target is large and the maximum allowable pointing error is small, this scheme is
inappropriate.
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Fig. 2.  Matching of antenna and target velocities for 
             constant accelerations (elevation only).

Fig. 3.  Matching of antenna and target positions for 
           elevation only (chasing target).
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Fig. 1. Matching of antenna and target positions for 
           constant accelerations (elevation only).
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This scheme uses the maximum acceleration in each acceleration region. Although this introduces
discontinuities in acceleration, it permits a straightforward calculation of the acquisition parameters.
Then a = ±am = ±amax in regions 1 and 3. By integrating twice, we get the velocities and positions as
a function of time in all three regions. The following calculations must be performed both for elevation
and for azimuth:

For region 1,

v = v0 + a1t (1)

θ = θ0 + v0t+
a1t

2

2
(2)

For region 2,

v = v2 = v0 + a1t1 = vf − a3t3 (3)

θ = θ0 + v0t1 + v2(t− t1) +
a1t

2
1

2
(4)
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where T = t1 + t2 + t3.

For region 3,

v = vf − a3(T − t) (5)

θ = θf − vf (T − t) + a3
(T − t)2

2
(6)

1. Calculation of Acquisition Parameters. In the above equations, we do not yet know the signs
of a1 or a3. Nor do we know the durations, t1 or t3, or the constant velocity, v2. These are calculated as
follows. Input the initial and final antenna positions (azimuth and elevation), θ0 and θf ,

∆θ = θf − θ0

as well as the initial and final antenna velocities (azimuth and elevation), v0 and vf ,

∆v = vf − v0

and the total time,

T = t1 + t2 + t3

as well as the maximum acceleration, am, and velocity, vm (in both azimuth and elevation), which must
be less than or equal to the requirements, amax and vmax (in both azimuth and elevation).

From the above inputs, output t1, t2, t3, and v2 and also determine a1 and a3. To obtain these outputs,
the following formulas are used. First, a normalized angular position, x, and a normalized angular velocity,
y, are calculated:

x =
∆θ
amT 2

− v0
amT

(7)

y = ∆v
amT

(8)

Next, ε0 and εf , intermediate variables that are used to find the signs of the accelerations in regions 1
and 3, are determined:

ε0 = εf = −1 when y ≤ 0 and y +
y2

2
≤ x ≤ −y

2

2
(9)

ε0 = εf = 1 when y < 0 and
y2

2
≤ x ≤ −y − y2

2
(10)

ε0 = 1 and εf = −1 when y > 0 and x > y − y2

2
or y ≤ 0 and x > −y

2

2
(11)

ε0 = −1 and εf = 1 when y > 0 and x <
y2

2
or y ≤ 0 and x < y +

y2

2
(12)
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These give us a1 and a3:

a1 = ε0am (13)

a3 = εfam (14)

Now the velocity in region 2 can be found:

for ε0 = εf , y2 =
y2εf − 2x
2(yεf − 1)

(15)

for ε0 6= εf , y2 =
yεf − 1 +

√
y2ε0εf − 2yεf + 2x(εf − ε0) + 1

εf − ε0
(16)

v2 = amTy2 + v0 (17)

Finally, the time intervals can be deduced:

t1 =
v2 − v0
a1

(18)

t3 =
vf − v2
a3

(19)

t2 = T − t1 − t3 (20)

Once the above parameters have been obtained, position and velocity commands are determined from
Eqs. (1) through (6).

The main problem with this acquisition scheme is the discontinuity in antenna acceleration at the
borders of regions 1 and 3. The problem is most serious at the border of region 3, where transient
phenomena may significantly affect antenna-pointing accuracy immediately after acquisition. To see this,
consider the example of Figs. 1 and 2. In this, Example (1),

θ0 = 25.104 deg

θf = 24.253 deg

v0 = −0.001 deg/sec

vf = 0.479 deg/sec

T = 6.6 sec

|a| = 0.25 deg/sec2

which has the solution
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v2 = −0.46 deg/sec

t1 = 1.85 sec

t2 = 1 sec

t3 = 3.75 sec

Figure 4 shows anticipated servo error during and immediately following acquisition for this example
using a simulation in which a PI controller is applied to a model of a 34-m Deep Space Network antenna,
namely DSS 13 in Goldstone, California. This servo controller, which uses both proportional (P) and
integral (I) feedback terms, is in use at DSS 13. The controller and the model of the antenna are described
in [2].

Fig. 4.  Anticipated servo error for Example (1) with 
constant acceleration in regions 1 and 3 (elevation 
only).
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2. Derivation of Results. This section gives a derivation of the results of Eqs. (7) through (20).
Begin by conserving the total angular distance:

v1t1 + v2t2 + v3t3 = ∆θ (21)

The values t1 and t3 are obtained from the change in velocity divided by the acceleration. This immedi-
ately gives Eqs. (18) and (19).

The values v1 and v3 are the average angular velocities in regions 1 and 3. Since the acceleration is
constant in each of these regions,

v1 =
v2 + v0

2
and v3 =

v2 + vf
2

(22)

When Eqs. (18), (19), and (22) are substituted in Eq. (21), the result is

v2
2 − v2

0

2a1
+ v2t2 +

v2
f − v2

2

2a3
= ∆θ (23)
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By substituting T − t1 − t3 for t2 in Eq. (23), we get

− (v2 − v0)2
a1

+ 2v2T +
(vf − v2)2

a3
= 2∆θ (24)

Further substitution of the definitions of x, y, y2, ε0, and εf from Eqs. (7), (8), (17), (13), and (14) gives

y2
2(εf − ε0) + 2y2(1− yεf ) + y2εf − 2x = 0 (25)

When ε0 = εf , which is often the case, Eq. (15) follows directly from Eq. (25). When ε0 6= εf , Eq. (16)
immediately results from applying the quadratic formula to Eq. (25). However, the sign in front of the
square root in Eq. (16) is yet to be determined. This is done as follows. Note that

t2 = T − vf
a3

+
v0
a1
− v2
a1

+
v2
a3

+
v0
a3
− v0
a3

which gives

t2
T

= 1− yεf + y2(εf − ε0)

The square root term in Eq. (16) is also equal to 1− yεf + y2(εf − ε0). Since t2/T must be positive, the
plus sign must be chosen in front of the square root.

The next step is to find out where the solutions for y2 described in Eqs. (15) and (16) are valid. The
values of x and y for which a solution can be found will be referred to as an “area of validity,” which
can be plotted on a graph of y versus x. This area is in “phase space,” and as it increases, a larger
number of combinations of target positions and velocities can be matched. Starting from Eq. (16), the
minimum and maximum values of x as a function of y2 are obtained by setting dx/dy2 = 0. This gives
y2 = (yεf − 1)/(εf − ε0) and t2 = 0. This means that the discriminant of the square root in Eq. (16), t22,
is 0 at the borders of the area of validity of solutions to Eq. (25). Setting the discriminant to zero gives

x =
1− 2yεf + y2ε0εf

2(ε0 − εf )
(26)

At the external boundaries of the area of validity, ε0 6= εf . Thus, the area of valid solutions is bounded
by the curves

x =
y2 + 2y − 1

4
(−1 ≤ y ≤ 1)

and

x =
1 + 2y − y2

4
(−1 ≤ y ≤ 1)

This area of validity is shown in Fig. 5. Notice that solutions for which x and y have the same sign are
favored (have more phase space) than those which do not.
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In these calculations, we have ignored the situation in which vmax corresponds to |ymax| < 1, which
would cut off the region of valid solutions at y < 1 or y > −1. This can be dealt with as follows: Note
that for the antenna velocity to exceed a velocity limit, either vo, vf , or v2 must exceed that limit. If
v0 exceeds the limit, we already have a problem, but it is one that has little to do with the trajectory
preprocessor. If vf exceeds the limit, we cannot acquire at that point, but we can try other values of T
for which vf may be smaller. If v2 is the only culprit, we increase T to a point at which v2 is acceptable.

Figure 5 also shows internal borders in the area of validity. These borders define the regions where
a1 and a3 are both negative, both positive, of opposite sign with a1 positive, and of opposite sign with
a1 negative, respectively. At these borders, t1 = 0 (which gives y2 = 0) or t3 = 0 (which gives y2 = y).
Substituting in Eq. (25),

y2 = 0⇒ x =
y2εf

2
(27)

while

y2 = y ⇒ x = y − y2ε0
2

(28)

By defining the borders of each of the four internal regions, Eqs. (27) and (28) permit us to write down
Eqs. (9) through (12), completing our derivation of the formulas used in the first acquisition scheme.

B. The Second Acquisition Scheme

To avoid the discontinuities in acceleration, one can choose a sinusoidal acceleration pattern. This
trades acquisition rate for pointing accuracy; the price that is paid for improved accuracy is a factor of
two in average antenna angular acceleration. The preprocessor matches position and velocity as before.
The antenna angular acceleration is still not matched to that of the target, but it is zero rather than the
maximum allowable acceleration at acquisition. The idea is to let a = ±am(1− cos 2πω) for some ω and
for am < amax/2. In particular, for region 1,

a = a1

(
1− cos

2πt
t1

)
Integrating with respect to t,
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v = v0 + a1

(
t− t1

2π
sin

2πt
t1

)
(29)

Integrating again,

θ = θ0 + v0t+ a1

(
t2

2
− t21

4π2
+

t21
4π2

cos
2πt
t1

)
(30)

For region 2,

a = 0

v = v2 = v0 + a1t1 = vf − a3T3 (31)

θ = θ0 + v0t1 + v2(t− t1) +
a1t

2
1

2
(32)

For region 3,

a = a3

(
1− cos

2π(T − t)
t3

)

Integrating with respect to (T − t),

v = vf − a3

(
T − t− t3

2π
sin

2π(T − t)
t3

)
(33)

θ = θf − vf (T − t) + a3

(
(T − t)2

2
− t23

4π2
+

t23
4π2

cos
2π(T − t)

t3

)
(34)

Note that da/dt is not merely finite everywhere; it goes to 0 at the borders of each region.

At first, these equations seem more complicated than those for constant accelerations, but the solutions
for their parameters are identical. Equations (7) through (20) still hold. The acceleration is not constant,
but Eq. (22) is still valid. The maximum value of am is reduced by a factor of 2, but Eqs. (13) and (14)
are unchanged. The same four solutions exist with the same boundaries in x and y, as represented by
Fig. 5. The only difference is that Eqs. (1) through (6) have been replaced by Eqs. (29) through (34).

Example (1) still has the same solution for t1, t2, t3, and V2. However, the anticipated servo error has
been reduced because the acceleration changes more smoothly.

Figure 6 shows the matching of antenna and target angular positions in Example (1) for acquisition
scheme 2. Figure 7 shows the corresponding matching of velocities. Note that the velocity slope is zero
at acquisition for the antenna but not for the target; there is still a slight discontinuity in acceleration
at acquisition. Figure 8 gives the anticipated servo error for Example (1) using the second acquisition
scheme.
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Fig. 7.  Matching the target velocity for raised 
cosine acceleration (elevation only).
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Fig. 8.  Anticipated servo error (for Example (1) with  
raised cosine acceleration in regions 1 and 2 (elevation 
only).
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Fig. 6.  Matching the target position for raised cosine 
         acceleration (elevation only).
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Since T has already been chosen prior to the calculation of t1 and t3, it may seem unnecessary to set
am to amax/2 when a smaller am would suffice. Also, potentially huge values of da/dt (jerk) can arise
in this trajectory preprocessing scheme. These high values of jerk are produced when one is near the
internal borders within the region of valid solutions in Fig. 5, since t1 or t3 approaches 0. Since | a |
goes from 0 to 2am and back in each region, the average |da/dt| is 4am/t3 in region 3. The maximum
|da/dt| is 8am/t3 in region 3, and as t3 approaches 0, this number becomes larger until the increase is
filtered out by the servo mechanism. Actually, this gives us a very small servo error because for the PI
controller, the maximum error caused by a sudden pulse does not exceed the total displacement caused
by the pulse. Thus, the PI controller does not react much to a t3 of 0.1 sec because 1/2aavt2 for an
average a of 0.125 deg/sec2 is only 0.6 mdeg, which is an upper bound on the servo transient error. This
is illustrated by Example (2), for which

θ0 = 23.7618 deg

θf = 24.253 deg

vf = 0.479 deg/sec

v0 = −0.001 deg/sec
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|a| = 0.25 deg/sec2

T = 2 sec

t1 = 1.9 sec

t2 = 0.0 sec

t3 = 0.1 sec

v2 = 0.4665 deg/sec

Figure 9 shows the anticipated servo error for Example (2) with acquisition scheme 2.
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Fig. 9.  Anticipated servo error during acquisition for 
Example (2), (t 3 = 0.1 sec, t 2 = 0) (elevation only).

16

4

R
E

G
IO

N
S

 1
, 2

, 3

If it is thought that the servo controller would react adversely to such a sharp acceleration pulse, one
can modify am so that neither t1 nor t3 is small, or at least choose a reasonable am to begin with and
modify either am or t if necessary. For example, one can choose an am that gives t2 = 0 and if t1 or t3 is
small anyway, one simply increases T . From Eq. (26), t2 = 0 gives

y2ε0εf − 2yεf + 1 = 2(ε0 − εf )x

Picking ε0εf = −1,

y2 + 2yεf

(
1− 2x

y

)
− 1 = 0

Let

Ω = 1− 2x
y

=
∆vT − 2∆θ + 2v0T

∆vT

Then
∆v
amT

= y = −εfΩ±
√

Ω2 + 1 (35)

The sign in front of the square root in Eq. (35) and the value of εf are readily determined by observing
that y has the same sign as ∆ν and that |y| ≤ 1. This determines y and gives

am =
∆v
yT

150



            
The a = 0 region can also be omitted from the algorithm entirely. The resulting scheme would have

no intermediate region of maximum velocity for large changes in antenna position and would increase
acquisition time as a result. If by some chance,

∆v
T

=
v2
f − v2

0

2∆θ

(and even with some latitude in choosing t, it is unlikely that this will occur), then a one-region solution
is possible where

a =
T

∆v

(
1− cos

2πt
T

)

If not, then ε0εf = −1, and y is determined from Eq. (35), which also gives am, while

y2 =
y ± 1

2

By leaving out the a = 0 region, overall accelerations are reduced. However, there is an increased flexibility
in maintaining a three-region algorithm, and picking am prior to solving for y2 may be impractical in
some situations.

C. The Third Acquisition Scheme

In our examples, the target acceleration and servo controller are such that the sudden discontinuity
in acceleration at acquisition does not significantly increase the pointing error. However, there is a
straightforward way to avoid this discontinuity by modifying the previous acquisition scheme so that it
matches the target acceleration at acquisition instead of acquiring with zero acceleration. One simply
switches to a frame of reference which has an acceleration equal to that of the target. Figure 10 shows
the anticipated servo error for Example (1) in this case.
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Fig. 10.  Servo error for acquisition scheme 3 and                 
constant velocity track. Acquisition is at t = 6.6 sec.

Let af be the acceleration of the target at t = T . Then match a position of θf −1/2aT 2 and a velocity
of vf − aT .

This means that ∆θ now equals θf − θ0 − ((1/2)aT 2) and ∆v = vf − v0 − aT . Once again, Eqs. (7)
through (20) remain valid. However, care must be taken to ensure that the actual antenna accelerations
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and velocities never exceed the maxima. The acceleration can be kept within bounds by choosing am =
amax − |af |/2. But the velocity is trickier, as the actual velocity in region 2 is no longer constant. For a
situation in which the antenna must traverse a large angular distance to acquire a target, it might at first
appear that the maximum velocity will be reached at the end of region 2. This is not the case. At the
end of region 2, the antenna has an acceleration of af , so the velocity is still increasing. The maximum
velocity is reached when the acceleration first reaches zero in region 3.

The difference between this scheme and the first scheme is that Eqs. (1) through (6) are now replaced
with the following equations:

For region 1,

a = a1

(
1− cos

2πt
t1

)
+ af

v = v0 + a1(t−
t1
2π

sin
2πt
t1

+ af t (36)

θ = θ0 + v0t+ a1

(
t2

2
− t21

4π2
+

t21
4π2

cos
2πt
t1

)
+

1
2
af t

2 (37)

For region 2,

a = af

v = v2 + af t (38)

θ = θ0 + v0t1 + v2(t− t1) +
a1t

2
1

2
+
af t

2

2
(39)

For region 3,

a = a3

(
1− cos

2π(T − t)
t3

)
+ af

v = vf − a3

(
T − t− t3

2π
sin

2π(T − t)
t3

)
+ af t (40)

θ = θf − vf (T − t) + a3

(
(T − t)2

2
− t23

4π2
+

t23
4π2

cos
2π(T − t)

t3

)
+
af t

2

2
(41)

D. The Fourth Acquisition Scheme

Our final scheme applies to situations where the antenna has an initial acceleration a0 and a final
acceleration af . In this scheme, both the initial and final accelerations are matched by the preprocessor.
We will assume that an initial value of am is chosen either by setting it to amax/2, by looking at Eq. (35)
(possibly modified by adding or subtracting a0 or af ), or by some as yet undetermined method. Inputs
are then θ0, θf , va, vf , A0, Af , Am, T, vmax, and amax (for both azimuth and elevation). Equations
(1) through (6) are now replaced by the following:
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For region 1,

a = a1

(
1− cos

2πt
t1

)
+
a0

2

(
1 + cos

πt

t1

)

Note that da/dt = 0 both at t = 0 and t = t1. By integrating,

v = v0 +
(
a1 +

a0

2

)
t+

t1
2π

(
a0 sin

πt

t1
− a1 sin

2πt
t1

)
(42)

θ = θ0 + v0t+
(
a1 +

a0

2

) t2

2
+

t21
4π2

[
2a0

(
1− cos

πt

t1

)
− a1

(
1− cos

2πt
t1

)]
(43)

For region 2,

a = 0

v = v2 = v0 +
(
a1 +

a0

2

)
t1 = vf −

(
a3 +

af
2

)
t3 (44)

θ = θ0 + v0t1 + v2(t− t1) +
(
a1 +

a0

2

) t21
2

+
a0t

2
1

π2
(45)

For region 3,

a = a3

(
1− cos

2π(T − t)
t3

)
+
af
2

(
1 + cos

π(T − t)
t3

)

v = vf −
(
a3 +

af
2

)
(T − t)− t3

2π

(
af sin

π(T − t)
t3

− a3 sin
2π(T − t)

t3

)
(46)

θ =θf − vf (T − t)−
(
a3 +

af
2

) (T − t)2
2

− t23
4π2

[
2af

(
1− cos

π(T − t)
t3

)
− a3

(
1− cos

2π(T − t)
t3

)]
(47)

When sign (a0) = sign (a1),

|a1| =
1
2

(2am − |a0|)

Otherwise |a1| = am. When sign (af ) = sign (a3),

|a3| =
1
2

(2am − |af |)

Otherwise |a3| = am.
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The solution from the previous acquisition schemes no longer applies. Although y2 has a similar form,

ε0 and εf are changed. The parameters are derived as follows. Once again, v1t1 + v2t2 + v3t3 = ∆θ. Let

β0 =
1

a1 + (a0/2)

βf =
1

a3 + (af/2)

Then

t1 = β0(v2 − v0)

t3 = βf (vf − v2)

From Eq. (45) we can calculate the change in position from t = 0 to t = t1. Dividing by t1, we get v1:

v1 =
v0 + v2

2
+
t1a0

π2

Equation (22) is no longer valid, so the calculation becomes more complex:

v3 =
vf + v2

2
+
t3af
π2

Plugging in,

(vf − v2)2
[
βf +

2β2
faf

π2

]
− (v0 − v2)2

[
β0 −

2β2
0a0

π2

]
= 2∆θ − 2v2T

Let

εf = am

(
βf +

2β2
faf

π2

)
and ε0 = am

(
β0 −

2β2
0a0

π2

)

Then

(vf − v2)2 εf − (v0 − v2)2 ε0 = 2am(∆θ − v2T )

Changing variables,

y2
2(εf − ε0)− 2y2(yεf − 1) + y2εf − 2x = 0

When εf = ε0, we get Eq. (15). Otherwise,

154



       
y2(εf − ε0) = yεf − 1±

√
y2ε0εf − 2yεf + 2x(εf − ε0) + 1 (48)

which is the same as Eq. (16) except that the sign in front of the square root can be negative.

Since ε0 can have at most 2 values, εf can have at most 2 values, and the sign in front of the square
root can have at most 2 values, at worst one needs to solve Eq. (48) eight times to see if a valid value of
y2 can be obtained. In practice one does not need to try all eight possibilities. If y > 0, ε0 and εf cannot
both be negative. If y < 0, ε0 and εf cannot both be positive. So only six cases remain.

It is tempting to simply write down the equations for the borders of each region and pick which solution
is valid. That would determine ε0 and εf . However, this method is not practical in general, as will be
illustrated by trying it for a0 = −am and af = am. When a1 and a3 are both negative,

ε0 = −1 +
2
π2

and εf = −2 +
8
π2

The minimum x is found by setting y2 to y. From Eq. (48),

x = y − y2ε0
2

Here, −1 ≤ y ≤ 0. When −1+af/2am = −1/2 ≤ y ≤ 0, the maximum x is determined by setting y2 = 0.
Now Eq. (48) gives

x =
y2εf

2

For −1 ≤ y < −1/2 = −1+af/2am, the maximum x is found by setting y2 = 1+2y. Here Eq. (48) gives

x = y2 +
y

2
(εf + 6) +

1
2
(3ε0 + 4)

When a1 and a3 are both positive,

ε0 = 2 +
8
π2

and εf = 1 +
2
π2

Now it takes three curves to describe the minimum x. For

0 ≤ y ≤ 2
ε0 + εf

, then y2 = 0⇒ x =
y2

2
εf

2
ε0 + εf

≤ y ≤ +1 +
a0

2am
, then y2 = y ⇒ x = y − y2

2
ε0

1 +
a0

2am
≤ y ≤ 1, then y2 = 1− y ⇒ x = y2(2εf − 3)y +

1
2
(4− 3εf )
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The maximum x also requires three curves. When

0 ≤ y ≤ 1
ε0
, then y2 = y ⇒ x = y − y2ε0

2

1
ε0
≤ y ≤ 1

εf
, then y2 =

yεf − 1
εf − ε0

⇒ x =
y2ε0εf − 2yεf + 1

2(ε0 − εf )

1
εf
≤ y ≤ 1, then y2 = 0⇒ x =

y2εf
2

When a1 is positive but a3 is negative, the minimum and maximum x require three curves each.

εo = 2 +
8
π2

and εf = −2 +
8
π2

The minimum x is as follows. For

1
2(ε0 − 1)

< y < 1 +
a0

2am
, then y2 =

2y + 1
4

⇒ x =
1− 2yεf − 4y2

8

0 < y <
1

2(ε0 − 1)
, then y2 = y ⇒ x = y − y2ε0

2

−1 +
af

2am
< y < 0, then y2 = 0⇒ x =

y2εf
2

The maximum x is as follows. For

1
ε0
< y < 1 +

a0

2am
, then y2 = y ⇒ x = y − y2ε0

2

0 < y <
1
ε0
, then y2 =

1− yεf
4

⇒ x =
1− 2yεf + εf ε0y

2

8

−1 +
af

2am
< y < 0, then y2 =

2y + 1
4

⇒=
1− 2yεf − 4y2

8

When a1 is negative but a3 is positive, we obtain our final six curves.

ε0 = −1 +
2
π2

and εf = 1 +
2
π2

The minimum x is as follows. For
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1
εf

< y < 1, then y2 = 0⇒ x =
y2εf

2

0 < y <
1
εf
, then y2 =

yεf − 1
2

⇒ x =
−y2εf ε0 + 2yεf − 1

4

−1 < y < 0, then y2 =
y − 1

2
⇒ x =

y2 + 2yεf − 1
4

The maximum x is as follows. For

1
2εf − 1

< y < 1, then y2 =
y − 1

2
⇒ x =

y2 + 2yεf − 1
4

0 < y <
1

2εf − 1
, then y2 = 0⇒ x =

y2εf
2

−1 < y < 0, then y2 = y ⇒ x = y − y2ε0
2

For other values of a0 and af , different curves determine the boundaries of the regions. The difficulties
in finding the internal borders of the area of validity are sufficiently great that were this algorithm to be
implemented, one would simply try all six candidate solutions and pick the first one that worked.

Figure 11 shows the area of valid solutions for a0 = −am and af = am superimposed on the one for
a0 = af = 0 shown in Fig. 5. Note the loss in phase space for valid solutions in the af = −a0 = am case.
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Fig. 11.  Shrinkage of region of valid solutions for      
            af  = –ao = am.
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IV. Discussion and Conclusions

Acquisition scheme 4 is overly complex even if one does not calculate the internal borders of the area
of validity. Such an algorithm would be very difficult to implement and maintain. Scheme 3 should
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suffice for high-speed acquisitions and is recommended as an option on Deep Space Network antennas.
The other schemes produce acceleration discontinuities which may cause undesirable excitations of the
antenna structure.

The algorithm can be run with the entire set of commands output at once. However, in practice, it
is not necessary to calculate all commands before implementing the first one. It is sufficient to find an
acceptable acquisition time, T . The position and velocity commands can be calculated in real time as
the antenna moves. If it is inconvenient to calculate the commands in real time, there may be enough
processor time to calculate them in advance and store them.

Since the trajectory preprocessor cannot be used to supply commands until a satisfactory acquisition
time is calculated, the question arises of how to find the acquisition time quickly. The problem is not
trivial, as the target may have a trajectory that is very difficult to match. There are a number of
possible strategies for picking a candidate acquisition time. A trade-off is involved. If the processor is
so slow that it may take several tenths of a second to discover if a candidate acquisition time will work,
one must be conservative in one’s choice of candidate acquisition times. Only a few candidates can be
tried. The candidate which is finally selected may not be optimal, but the time lost in finding a better
solution may more than make up for the time saved by the improved answer. On the other hand, if
thousands of candidate solutions can be tried in a second, one should expect to find an acquisition time
that is within a fraction of a second of optimal. Mere processor speed does not guarantee success, as the
processor may need to be shared with other tasks. Nor should it be forgotten that each target position
may need to be translated in a relatively time-consuming manner to an equivalent antenna command.
There may be coordinate conversions to apply, refraction must be taken into account, and subreflector
squint must be corrected for, along with a host of other tabled or modeled systematic pointing errors.
A trajectory preprocessor algorithm should not be developed for an antenna system unless one has a
reasonable knowledge of the required and available processor time, both before and during the time
period in which preprocessor commands are to be output.

When the trajectory preprocessor is used to match the trajectory of a sidereal object, the acquisition
time is easy to estimate. There is usually no hurry to acquire the object, but even if there were, the
preprocessor could handle the situation rather easily. A problem arises when the algorithm is used to
match the trajectory of a fast-moving object that may be moving at 10 to 50 percent of the maximum
antenna angular rate at acquisition.

It is understandable that one might wish to construct a simple, general algorithm to generate candidate
acquisition times. One can guess a time of 1 sec, and should that be insufficient, continue with guesses
of 2, 4, 8, 16, 32, 64, and 128 sec until a solution is found. If powers of two seem inappropriate, one
can try powers of 3, 1.5, 1.2, or whatever. One can be satisfied with the first acceptable solution, or
one can backtrack, looking for an even better one. Another idea is to start with the maximum ∆θ/vmax
and 2∆v/amax. Any of these ideas may be acceptable, but it seems far better to produce a carefully
constructed table of candidate acquisition times for each given mode, especially for low-Earth-orbiting
satellites. A simple default mode can be included as well.

This trajectory preprocessor algorithm depends greatly on the ability to predict exactly where the
antenna will be when preprocessor commands are to begin. Any confusion resulting from misapplication
of pointing corrections or differences between hoped for and actual position will result in a discontinuity
in command position, which is precisely the problem that trajectory preprocessing is supposed to avoid.
Choosing anticipated commands for the initial antenna position and velocity does no good if the antenna
is pointed elsewhere. Using the actual antenna position does little good if the antenna is moving quickly
and the preprocessor commands are due to start only a second or two later. Other initialization errors
are possible that could render the preprocessor ineffective. For example, if incorrect or inappropriate
velocity or acceleration limits are used, so that the antenna cannot respond properly to the preprocessor
commands, antenna control will be back into the nonlinear region that the preprocessor was designed to
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rescue it from. As long as care is taken to avoid mistakes of this sort, the preprocessor should serve a
useful function.

There is no reason to demand that an antenna controller always be in a mode for which trajectory
preprocessing is in use. The preprocessor can be an option used especially in cases for which very accurate
tracking is required or for which control problems are anticipated. For this reason, an acquisition scheme
that matches target acceleration may be favored over one that does not; the preprocessor may be used
primarily when one wishes to avoid what sometimes seem like small acceleration discontinuities. However,
use of a preprocessor as an option does not mean that it should be considered as an ad hoc feature rather
than an integral part of a control system design. The issues of how and where to fit preprocessing into
a system should be addressed even if it is not yet decided whether or not such an algorithm will be
implemented. This would avoid problems that may arise when one attempts to add it after the rest of
the system is complete.

As pointing requirements become more strict and tracking speeds increase, trajectory preprocessing
will become a more and more valuable option to improve antenna control. The algorithm described in
this article could be put to good use in the Deep Space Network.
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